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Abstract
We study nonlinear perturbative expansions for PT -symmetric local
Schrödinger operators. The Schrödinger operator is a sum of the harmonic
oscillator Hamiltonian and a local PT -symmetric potential depending, in
general, nonlinearly on the perturbation parameter. A specific class of models
having real spectrum for any value of the parameter is proposed.

PACS numbers: 03.65.−w, 03.65.Ca, 03.65.Ge, 02.30.Tb, 03.65.Nk

1. Introduction

In [1] the authors analyze the question of perturbation theory for PT -symmetric Hamiltonians
of the form H(α) = H0 + iαW, α ∈ R, where H0 is a PT -symmetric Schrödinger operator
in L2(R) and W ∈ L∞

loc(R) is a real-valued function such that PW := W(−x) = −W(x); T
is complex conjugation. More precisely, in [1] it is proved that, under suitable assumptions
on H0 and W , the perturbed eigenvalues E(α) of H(α), which converge to those of H0 as
α → 0, are real for |α| sufficiently small. The aim of this paper is to extend these results to
Hamiltonians of the form

H(α) = H0 + iWα (1.1)

where the dependence of Wα on the perturbation parameter is no longer simply linear, but of
the most general form. Operators of the form (1.1) often arise in problems of interest in physics
insofar as relevant potentials are expressed in terms of exponential or trigonometric functions
which, by construction, have to depend on dimensionless arguments. A very interesting result
in this framework has been recently obtained in [2], where numerical calculations have shown
the existence of non-real complex conjugate eigenvalues for suitable values of α > 0 for the
Hamiltonian

H(α) = p2 + x2 + ix3 e−α(p2+x2). (1.2)

Since for α = 0 one formally has H(0) = p2 + x2 + ix3 and for α = +∞ one has
H(∞) = p2 + x2, and the spectra of both H(0) and H(∞) are purely real, one is led to
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conjecture that the perturbed eigenvalues of H(α) are real both for α → 0 and as α → +∞,
i.e., for α small and for α large. However, in (1.2) the perturbation term iWα = ix3 e−α(p2+x2)

represents a PT -symmetric pseudo-differential operator in L2(R) whose spectral analysis
is not trivial; in fact, since it is not Hermitian there is no control a priori on its numerical
range as α → 0. As a first approach to problem (1.1) in this paper we restrict ourselves to
consider only local perturbations Wα, α � 0, i.e., functions depending only on x and not on
p := −i d

dx
. The perturbations are thus multiplication operators by functions Wα(x), such as,

for instance, Wα(x) = x3 e−αx2
, while H0 = p2 + x2 is the Schrödinger operator associated

with the one-dimensional harmonic oscillator. We will prove, under suitable assumptions,
that the perturbed eigenvalues of H(α) are real for α > 0 small, if the eigenvalues of the
unperturbed Hamiltonian H(0) := H0 + iW0 are real and simple. As in [1], the proof is based
on a stability argument for the spectrum of H(0) with respect to the family {H(α) : α > 0},
which guarantees that the multiplicity of the eigenvalues is preserved as α → 0. For the
importance of the reality of the spectrum in PT -symmetric quantum mechanics, see, e.g.,
[1, 3–18]. The paper is organized as follows. In section 2 we state and prove the results on the
stability and reality of the perturbed eigenvalues. We briefly sketch a class of models where
the spectrum is real for any value of the parameter. The construction of these models is based
crucially on the nonlinear dependence on the parameter. Finally, our results are summarized
in the conclusions.

2. Stability and reality of perturbed eigenvalues

Let, then, H0 = − d2

dx2 + x2 denote the selfadjoint operator in L2(R) associated with the

harmonic oscillator, with domain D(H0) = D(p2) ∩ D(x2), p2 = − d2

dx2 . Moreover, let
Wα, α � 0, denote a family of continuous, odd, real-valued functions: Wα ∈ C0(R) and
Wα(−x) = −Wα(x),∀α � 0, such that Wα(x) converges to W0(x) as α → 0, uniformly on
the compact subsets of R, i.e. for any compact set K ⊂ R

lim
α→0

(sup
x∈K

|Wα(x) − W0(x)|) = 0. (2.1)

Then let H(α) = p2 + x2 + iWα, α � 0, denote the closed operator in L2(R) with C∞
0 (R) as

a core, defined by

H(α)u = −u′′ + x2u + iWαu, ∀u ∈ C∞
0 (R), (2.2)

and let D(H(α)) denote its domain. Clearly, H(α) is PT -symmetric ∀α � 0. Now let ‖v‖
denote the L2-norm of a function v ∈ L2(R) and let (p2 + x2)1/2 be the selfadjoint positive
square root of p2 + x2 as defined by the spectral theorem. Then for any u ∈ C∞

0 (R) we have

‖(p2 + x2)1/2u‖2 = 〈u, (p2 + x2)u〉 � 〈u, (p2 + x2)u〉 + |〈u,Wαu〉|

�
√

2|〈u,H(α)u〉| �
√

2‖H(α)u‖‖u‖ �
√

2

2
(‖H(α)u‖2 + ‖u‖2). (2.3)

This implies that D(H(α)) ⊂ D((p2 + x2)1/2) and that (p2 + x2)1/2 is relatively bounded
with respect to H(α). This in turn implies that H(α) has compact resolvents, and therefore a
discrete spectrum, since (p2 + x2)1/2 has compact resolvents (see, e.g., [19]). Moreover, one
can easily see that the numerical range N (α) := {〈u,H(α)u〉 : u ∈ D(H(α)), ‖u‖ = 1} of
H(α) is contained in the right half plane R+ := {z : Rez � 0}. In fact

Re〈u,H(α)u〉 = 〈u, (p2 + x2)u〉 � 0, ∀u ∈ C∞
0 (R), ∀α � 0. (2.4)

Hence σ(H(α)) ⊂ N (α) ⊂ R+ and ‖(z − H(α))−1‖ � |Re z|−1,∀z /∈ R+. Here σ(H(α))

denotes the spectrum of H(α). Let Ej , j = 1, 2, . . . , denote the sequence of the (discrete)
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eigenvalues of H(0). Finally, let us recall that an eigenvalue E of an operator is called simple
(or non degenerate) if m(E) = 1, where m(E) denotes the algebraic multiplicity of E. For
a review of this notion in an analogous framework, see [1]. Here we only mention the fact
that if an eigenvalue is simple, there is only one corresponding eigenvector and the associated
nilpotent vanishes. In analogy with the result obtained in [1] for perturbation potentials Wα

depending only linearly on α, we can now state the main result of this paper.

Theorem 2.1. Under the above assumptions each eigenvalue Ej of H(0) is stable with respect
to the family H(α), α � 0. In particular, if Ej is simple and real there exists αj > 0 such that
for 0 < α < αj ,H(α) has exactly one eigenvalue Ej(α) close to Ej :

lim
α→0

Ej(α) = Ej (2.5)

and Ej(α) is real. Conversely, if E(α) ∈ σ(H(α)) and limα→0 E(α) = E, then E is an
eigenvalue of H(0).

Remark 2.2.

(i) For the notion of stability for eigenvalues, see, e.g., [19, 20] and also the article [1]
where, after recalling the definition, the authors illustrate the stability theory developed
by Hunziker and Vock in [20]. This theory will be applied also here in order to prove
the theorem. Remark that stability is a very powerful property, since it implies, roughly
speaking, that the multiplicity of any unperturbed eigenvalue E is ‘preserved’ as the
perturbation is switched on (i.e. when we pass from α = 0 to α > 0 suitably small); in
other words, near E there are exactly m = m(E) eigenvalues (counting multiplicity) E(α)

of H(α), for α sufficiently small.
(ii) The statement on the reality of Ej(α) if Ej is simple and real, follows from the fact that

the eigenvalues of a PT -symmetric operator come in pairs of complex conjugate values.
So Ej(α) has to be real, because otherwise there would be two distinct eigenvalues, Ej(α)

and Ej(α), near Ej and not just one as stated in the theorem.

According to [20], the proof of theorem 2.1 follows from the following

Lemma 2.3. Let H ∗(α) denote the adjoint operator of H(α), α � 0. Then

(1) For all u ∈ C∞
0 (R)

lim
α→0

H(α)u = H(0)u (2.6)

and

lim
α→0

H ∗(α)u = H ∗(0)u. (2.7)

(2) There exist constants a, b > 0 and γ, |γ | < π/2, such that

〈u, p2u〉 � a{cos γ 〈u,H(α)u〉 + sin γ 〈u,H(α)u〉 + b〈u, u〉} (2.8)

for all u ∈ C∞
0 (R).

(3) For any z ∈ C, there exist positive constants δ, n0 and α0 such that

dn(z,H(α)) � δ > 0, (2.9)

for all n > n0 and 0 � α < α0, where dn(z,H(α)) := dist(z,Nn(α)) and

Nn(α) := {〈u,H(α)u〉 : u ∈ D(H(α)), ‖u‖ = 1, u(x) = 0 for |x| < n} (2.10)

is the so-called ‘numerical range at infinity’ (see [1]).
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Proof. Assertion (1) immediately follows from (2.1). Indeed, for u ∈ C∞
0 (R) let K be a

compact set in R such that u(x) = 0 for x /∈ K . Since H ∗(α)u = (p2 + x2 − iWα)u, we have

‖(H(α) − H(0))u‖2 = ‖(H ∗(α) − H ∗(0))u‖2 = ‖(Wα − W0)u‖2

=
∫

K

|Wα(x) − W0(x)|2|u(x)|2 dx � (sup
x∈K

|Wα(x) − W0(x)|)2‖u‖2, (2.11)

and (2.11) goes to zero as α → 0 by (2.1). As for (2), we have

Re〈u,H(α)u〉 = 〈u, (p2 + x2)u〉 � 〈u, p2u〉, ∀u ∈ C∞
0 (R), ∀α > 0. (2.12)

Hence (2.8) holds with a = 1, any b > 0 and γ = 0. Finally we prove (3). If we set
Dn(α) := {u ∈ D(H(α)) : ‖u‖ = 1, u(x) = 0 for |x| < n} we have

dn(z,H(α)) = inf
u∈Dn(α)

|z − 〈u,H(α)u〉|. (2.13)

Now, for u ∈ Dn(α) we obtain

|z − 〈u,H(α)u〉| � |〈u,H(α)u〉| − |z| � Re〈u,H(α)u〉 − |z|
= 〈u, (p2 + x2)u〉 − |z| � 〈u, x2u〉 − |z| � n2 − |z|. (2.14)

Thus, it follows from (2.13) that

lim
n→∞
α→0

dn(z,H(α)) = +∞, (2.15)

and this proves (3).
�

Example 2.4.

(1) The potential function Wα can be chosen as in section 1: Wα(x) = x3 e−αx2
, α � 0.

Indeed it is easy to verify that Wα(x) converges to W0(x) = x3 as α → 0 uniformly on
any compact set K ⊂ R. More precisely, let |x| � M for all x ∈ K; then for 0 < α < 1
we have

sup
x∈K

∣∣x3
(
e−αx2 − 1

)∣∣ �
√

αM3
∞∑

n=1

M2n

n!
�

√
αM3 eM2

, (2.16)

and (2.16) tends to zero as α → 0. Since the eigenvalues of H(0) are real and simple,
so is each perturbed eigenvalue Ej(α) of H(α) for 0 < α < αj . Now setting α′ = α−1

we can draw similar conclusions for α′ → 0, i.e. α → +∞. In fact Wα(x) = x3 e−αx2

converges uniformly to W∞(x) = 0, uniformly in R as α → +∞ and the eigenvalues of
H(∞) := p2 + x2 are real and simple.

(2) The functions Wα(x) = x3 cos(αx),Wα(x) = x3 eαx2
and Wα(x) = x2k sin(αx), k =

0, 1, . . . , α � 0, all satisfy the assumptions of theorem 2.1. Note that the function Wα is
not required to be bounded.

Remark 2.5.

(a) Theorem 2.1 implies that (non-real) complex eigenvalues of H(α) cannot accumulate at
finite points but only at infinity as α → 0. If, in general, our result does not exclude
the possibility of complex eigenvalues (diverging to infinity as α → 0), however for the
potential Wα(x) = x3 e−αx2

, because of its uniform boundedness and convergence to zero
as α′ = α−1 → 0, it is possible to repeat the argument used in [4, 18] in order to prove
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that for α′ = α−1 suitably small the whole spectrum of H(α) is purely real. Indeed, one
can prove that if α0 is chosen in such a way that |Wα(x)| < 1 for α > α0, then the power
series expansion for the resolvent (z − H(α))−1 is convergent for |Im z| > 1. Moreover,
any eigenvalue of H(α) is trapped inside a square centered at some eigenvalue Ej of
H∞ = p2 + x2 with side 2, and an analyticity argument in the parameter α shows that
it coincides with the (real) perturbed eigenvalue Ej(α) whose existence (and reality) is
guaranteed by theorem 2.1. In other words, in this particular case the set of perturbed
eigenvalues Ej(α), j = 1, 2, . . . , covers the whole spectrum of H(α), for α > α0.

(b) The results obtained above and in [3, 4, 18] with perturbation theory methods ensure the
reality of the spectrum for α small. Now we briefly argue (see [21] for more details) that
the nonlinearity allows us to build a class of models where the reality of the spectrum holds
independently of the values of the parameter. More precisely, the result is a consequence
of the two requirements

‖Wα‖ → 0 as α → 0+ and ‖Wα‖ < 1
2 , ∀α > 0. (2.17)

A typical Wα is given by Wα(x) = ck(α)x2k+1 e−αx2
, k = 0, 1, . . . , α > 0, for a suitable

choice of ck(α). It is obvious that the second requirement in (2.17) cannot be satisfied
if Wα depends linearly on α. Having assessed that the spectrum is purely real one
could conjecture that for any value of α > 0 a similarity transformation, depending on α,
connects H(α) with a selfadjoint operator h(α). We remark that similarity transformations
are currently discussed to link PT -symmetric Hamiltonians to Hermitian Hamiltonians
under suitable assumptions (see, e.g., [22]; see also [23, 24]).

3. Conclusions

A further class of PT -symmetric operators admitting real eigenvalues is isolated. With
respect to former results, the present class exhibits the peculiarity of a general dependence on
the perturbation parameter, instead of the linear one always considered so far. It is precisely
this nonlinear dependence which allows us to formulate a class ofPT -symmetric Hamiltonians
with real spectrum independently of α as discussed in remark 2.5(b).
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